Feature Weighting Random Forest for Detection of Hidden Web Search Interfaces

نویسندگان

  • Yunming Ye
  • Hongbo Li
  • Xiaobai Deng
  • Joshua Zhexue Huang
چکیده

Search interface detection is an essential task for extracting information from the hidden Web. The challenge for this task is that search interface data is represented in high-dimensional and sparse features with many missing values. This paper presents a new multi-classifier ensemble approach to solving this problem. In this approach, we have extended the random forest algorithm with a weighted feature selection method to build the individual classifiers. With this improved random forest algorithm (IRFA), each classifier can be learned from a weighted subset of the feature space so that the ensemble of decision trees can fully exploit the useful features of search interface patterns. We have compared our ensemble approach with other well-known classification algorithms, such as SVM, C4.5, Naïve Bayes, and original random forest algorithm (RFA). The experimental results have shown that our method is more effective in detecting search interfaces of the hidden Web.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

Classifying Very High-Dimensional Data with Random Forests Built from Small Subspaces

The selection of feature subspaces for growing decision trees is a key step in building random forest models. However, the common approach using randomly sampling a few features in the subspace is not suitable for high dimensional data consisting of thousands of features, because such data often contains many features which are uninformative to classification, and the random sampling often does...

متن کامل

A Feature-Weighted Instance-Based Learner for Deep Web Search Interface Identification

Determining whether a site has a search interface is a crucial priority for further research of deep web databases. This study first reviews the current approaches employed in search interface identification for deep web databases. Then, a novel identification scheme using hybrid features and a feature-weighted instance-based learner is put forward. Experiment results show that the proposed sch...

متن کامل

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

Fault Detection of Aircraft System with Random Forest Algorithm and Similarity Measure

Research on fault detection algorithm was developed with the similarity measure and random forest algorithm. The organized algorithm was applied to unmanned aircraft vehicle (UAV) that was readied by us. Similarity measure was designed by the help of distance information, and its usefulness was also verified by proof. Fault decision was carried out by calculation of weighted similarity measure....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJCLCLP

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2008